题目连接:
Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy ai mod aj=0,now OO want to know
∑i=1n∑j=inf(i,j) mod (109+7).Input
There are multiple test cases. Please process till EOF.
In each test case: First line: an integer n(n<=10^5) indicating the size of array Second line:contain n numbers ai(0<ai<=10000)Output
For each tests: ouput a line contain a number ans.
Sample Input
5
1 2 3 4 5Sample Output
23
Hint
题意
f(l,r)表示[l,r]区间中有多少个i满足在这个区间中找不到其他j使得ai%aj=0
然后让你输出所有f(l,r)的累加。
题解:
对于每一个位置,我算贡献就好了。
直接暴力分解a[i]就好了。
复杂度nsqrtn的。
代码
#includeusing namespace std;const int maxn = 1e5+6;const int mod = 1e9+7;int a[maxn],n;int L[maxn],R[maxn];int p[maxn];int main(){ while(scanf("%d",&n)!=EOF) { memset(L,0,sizeof(L)); memset(R,0,sizeof(R)); memset(p,0,sizeof(p)); memset(a,0,sizeof(a)); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<=n;i++) { for(int j=1;j<=sqrt(a[i]);j++) if(a[i]%j==0)L[i]=max(L[i],p[j]+1),L[i]=max(L[i],p[a[i]/j]+1); p[a[i]]=i; } reverse(a+1,a+1+n); memset(p,0,sizeof(p)); for(int i=1;i<=n;i++) { for(int j=1;j<=sqrt(a[i]);j++) if(a[i]%j==0)R[i]=max(R[i],p[j]+1),R[i]=max(R[i],p[a[i]/j]+1); p[a[i]]=i; } long long ans = 0; for(int i=1;i<=n;i++) { ans += 1ll*(i-L[i]+1)*(n-R[n-i+1]+1-i+1); ans%=mod; //cout< <<" "< <